calender
Date & Time
Search
Datum
{{range.dates[index].day}}
{{range.dates[index].date}}
Time
Mornings Noon Afternoons Evenings
  • from
  • to
  • o'clock
Topic
Event location
Event
Properties
{{item.name}}
{{item.name}}
Exhibition venue

(please choose the desired areas)

Lecture language
Format

Events calendar 2019

Information about forums, live demonstrations, Accelerating Talents and panel discussion. The entire forum program is available in the event database.

Back to the EventList

Challenges for Cu-Metallization in More than Moore Applications

NOV
13
2019
13. NOV 2019

Presentation Hall ICM - Internationales Congress Center München SEMICON EUROPA > Strategic Materials Conference > Session 3 - Power

09:10-09:40 h | ICM - Internationales Congress Center München ICM Room 13a, 1st Floor

Subjects: SEMICON EUROPA

Type: Presentation

Speech: English

Copper metallization is widely used in More than Moore applications for interconnects. Through silicon vias (TSV), copper pillars and redistribution layers are used for chip stacking or in system in package applications. Thick copper metallization for power devices increases the performance of smart power devices or MOSFETs. For all these applications, copper is mainly deposited by electroplating. The advantage of electroplating is that the growth mechanism of the copper film can be tailored for each application by adding the right organic additives to the electrolyte.In this paper, we present how different additive packages influence the solderability and the mechanical properties of the deposited Cu films. Using additive package A (electrolyte A, film A) a more conformal deposition at high deposition rates is achieved compared to additive package B (electrolyte B, film B). However, films deposited with electrolyte A show increased incorporation of sulfur and chlorine compared to electrolyte B. This indicates that more additives are incorporated into films deposited with electrolyte A. This contamination lowers the interface energy between Cu and SnAg balls [1] for flip chip or Cu pillar applications and therefore more voids are induced at the Cu-SnAg interface after thermal storage compared to electrolyte B.The mechanical properties of Cu films A and B were determined by micro tension tests of freestanding Cu films. The test equipment is heatable and was installed into a SEM to visualize the fracture mechanism [2]. Whereas Cu films A show very small grains after annealing the grains of film B are in the order of the sample geometry. Cu films A show therefore a higher yield stress compared to films B at room temperature; however the fracture mechanism changes with increasing temperature to brittle for film A as a result of segregation of sulfur and chlorine to the grain boundaries [3].

Informations

Dr. Werner Robl

Werner Robl received his PhD in Physics from the University of Regensburg in 1994. After his degree he joined Infineon (former Siemens Semiconductors). Since then he has been working on development of new metallization schemes in Regensburg and Munich, Germany and East Fishkill, USA. Currently he is working as senior principal on new metalliza­tion schemes for semiconductors.

Dr. Werner Robl
Senior Principal Metallization

Location

Eingang
Nord-West
ICM
Eingang
Nord
Eingang
West
Atrium
Eingang
Nord-Ost
Eingang
Ost
Conference
Center Nord
Freigelände
C1
C2
C3
C4
C5
C6
B0
B1
B2
B3
B4
B5
B6
A1
A2
A3
A4
A5
A6

More Events